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1 Introduction

Term structures model the relationship between time to maturity and yields for bonds,
usually zero-coupon Treasury bonds, and the resulting curve is known as the yield curve.
We develop models for estimating the US yield curve using various parametric methods,
specifically the cubic B-spline, smoothing spline, and exponential polynomial methods. Then
we discuss the theoretical framework of term structure models, including Hull-White and the
one and two factor CIR models.

2 Yield Curve Estimation

There are two general classes of models the term structure models of interest rates: paramet-
ric methods and nonparametric methods. While the nonparametric models offer flexibility
that is often desirable for real-world applications, the parametric models are easier to inter-
pret and also have nice mathematical properties. This paper specifically focuses on the cubic
spline, smoothing spline, and Svensson model (a type of exponential polynomial model).

Splines in a general sense refer to continuous piecewise polynomials . Using splines for
data interpolation and smoothing is a popular method for modeling the yield curve. The
cubic and smoothing splines that we examine in this paper use a set b = b0, b1, ...bn of control
points (i.e. the price/yields of the Treasury bonds) to construct a smooth piecewise curve.
Besides the benefits of close approximation of the yield curve, both cubic and smoothing
splines are C2. We begin with background on splines, introducing Bezier curves and Bezier
splines before formally introducing cubic B-splines, smoothing splines, and the Svensson
model.

2.1 Par Curves and Spot Curves

In any discussion of yield curves, it is necessary to explain the difference between the par
yield curve and the spot yield curve. Coupon-paying bonds typically pay a fixed coupon
semi-annually and then pay back the par value at maturity. The yield-to-maturity (YTM)
is the single discount rate that can be used on the cash flows of a coupon-paying bond to
determine its present value, or market price. The yield-to-maturity as a function of maturity
is given by the par curve.
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Whereas the par curve is used with coupon-paying bonds, or instruments with multiple
cash flows, the spot curve is used with zero-coupon bonds. That is, the spot rate is used to
discount a single cash flow at maturity to determine its present value. For this reason, the
spot curve is also known as the discount function, since it provides the discount factor of a
future cash flow for any maturity. To determine the present value of a coupon-paying bond
using the spot curve, each individual cash flow of the bond can be treated as an individual
zero-coupon bond and discounted at its maturity. This connection will be re-visited below
in the application of B-splines.

2.2 Bezier Curves

A Bezier curve is a smooth parametric, polynomial curve constructed using and intended to
fit a set of n + 1 coefficients, called control points, and a set of basis polynomials, where
n is the degree. Rather than the standard polynomial basis, Bezier curves use Bernstein
polynomials as a basis. The Bernstein polynomials are given below for degree 3:

B0(t) = t3 B1(t) = 3t2(1− t) B2(t) = 3t(1− t)2 B3(t) = (1− t)3

Accordingly, given a set of 4 control points (p0, p1, p2, p3), the corresponding cubic Bezier
curve on [a,b] is defined as:

C[a,b](t) =
3∑
i=0

piBi(t) a ≤ t ≤ b

Also, the Bezier curve must vanish outside of the interval [a,b]. When t = 0, all Bernstein
polynomials equal 0 except for B1(a) = 1, and when t = 1, all Bernstein polynomials equal
0 except B3(b) = 1. Thus, we have that C[a,b](a) = p0 and C[a,b](b) = p3 so the Bezier curve
will pass through the first and last control points at t = a and t = b, respectively. A Bezier
curve need not pass through any of the intermediate control points.

2.3 Bezier Splines

Definition 2.1. Bezier Cubic Spline:
A Bezier spline, is a piecewise function composed of Bezier curves.

Following from above, it is valuable to limit the degree of the Bezier curves making up the
segments of a spline to prevent overfitting and complexity. A widely used implementation is
the cubic Bezier spline, where each segment of the spline is a cubic Bezier curve. To build a
cubic Bezier spline, n+ 1 provided control points are used to generate a new set of n+ 3 de
Boor control points, which are then used as the standard control points for each individual
curve segment. This new set of control points is used to generate cubic Bezier segments.
These Bezier segments meet at junction points and typically follow smoothness criteria that
ensure that the curve is twice differentiable. What is unique about Bezier splines is that the
only input is the set of control points. That is, the de Boor control points and the junctions,
known as knots, are not given as input but rather calculated using a system of equations.
In other spline implementations, such as the B-spline, knots are provided as an input in the
construction of the curve.

2



2.4 Cubic B-Spline

The B-spline, or the basis spline, is a modification of the Bezier spline that produces stabler
results. A B-spline C(t) is given by the equation:

C(t) =
n∑
i=0

biNi,k(t) 0 ≤ t ≤ 1

Whereas the Bezier Spline uses the set of Bernstein polynomials as its basis, the B-spline
uses the set of Ni,k functions, indexed by i and with degree k, as its basis. A B-spline has
n+1 control points, m+1 knots, and basis functions with degree k. These parameters relate
by the equation m = n+ k + 1.

Cubic B-splines are most widely used in term structure modeling. Since basis functions
have degree 3, the relationship between knots and control points is refined to m = n+ 4.

Since the B-spline curve is a linear combination of the basis functions using control points,
there are as many basis functions as control points. The basis functions can be calculated
using a set of chosen knot points. That is, B-splines offer more flexibility than Bezier splines
do, which improves correctness of fit when the knots are chosen wisely. Given q + 7 knots,

ξ−3 < ξ−2 < ... < ξq < ξq+1 < ξq+2 < ξq+3

the q + 3 basis functions are given by

Nk,3 =
k+4∑
j=k

(
k+4∏

i=k,i neqj

(
1

ξi − ξj
))(x− ξj)3+ k = −3,−2, ..., q − 1

2.5 Modeling Term Structures

To model the term structure, a cubic B-spline must be defined to model the discount function,
or spot curve, which predicts the price of a bond as a percentage of its face value at a maturity
time t. This spline, D, is parameterized by a vector of control points z. The present value
of a zero-coupon bond, or any cash flow, that pays face value $1 at time t is then given by
a B-spline curve of the form:

D(t; z) = z1N1,3(t) + z2N2,3(t) + ...+ zx−1Nx−1,3(t) + zxNx,3(t)

This curve is described by x + 1 control points, z = (z0, z1, ..., zx), and corresponding
basis functions. Further, we can describe a length-m column vector of discount factors that
the cubic B-spline predicts at times t1, t2, ..., tm. This vector is given by

d(z) =


D(t1; z)
D(t2; z)

...
D(tm−1; z)
D(tm; z)

 =


N0,3(t1) . . . Nx,3(t1)

...
...

N0,3(tm−1) . . . Nx,3(tm−1)
N0,3(tm) . . . Nx,3(tm)




z0
z1
...

zx−1
zx

 =: Ψz
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We note that each value d(z)i in the column vector, for 1 ≤ i ≤ m, provides the spot rate
at maturity ti. Therefore, given a length-m row vector of cash flows, call it c, where each
item ci represents the cash flow at time ti, the dot product c · d(z) gives the present value
of the m cash flows. This follows from the description of par curves and spot curves above.
That is, these m cash flows can be considered to be the cash flows of a coupon-paying bonds,
and the dot product with the spot rate column vector d(z) discounts each cash flow as an
individual zero-coupon bond and sums the values.

As data input, we use a vector of n quoted market bond prices p = (p1, p2, ..., pn)T for
several coupon-paying bonds. Even though the objective is to model the term structure
for zero-coupon bonds, most market data exists for coupon-paying bonds. Additionally, an
n-by-m cash flow matrix, C, is needed to provide the coupon payment cash flows of these n
bonds over m times, where ci,j represents the cash flow of bond pi at time tj. Then, in this
application, the control points are calculated with the objective of minimizing the difference
between the quoted bond prices and the predicted price using the cubic B-spline.

Using matrix C and discount factors d(z), we can define the length-n column vector A
by the dot product

A = C ·Ψz

where element Ai gives the prediction of the price of bond pi. The task of determining the
set of control points can then be given by the linear optimization

min
z∈Rx+1

∥∥P − C ·Ψz

∥∥2
which calculates the control points that give the smallest difference between the quoted
bond prices and the prices predicted by the cubic B-spline modeling the discount function.
Assuming A has full rank, the optimal solution is given by the classical regression coefficient
estimator:

z∗ = (ATA)−1ATp

2.6 Evaluation of B-Splines

For the above example, the cubic B-spline that models the discount function can be evaluated
using the optimization function above. This measure is given by:

min
z∈Rx+1

∥∥P − C ·Ψz

∥∥2 =
∥∥P − C ·Ψz∗

∥∥2
A discussion of knots was ignored in the above example. Because there are x+ 1 control

points, and the degree is k = 3, we can determine the number of required knots s+ 1 using
the relation s = x+1+k, or s+1 = x+5. Selection of these (x+5) knots is required to define
the x+ 1 B-spline basis functions. Above, it was noted that wise selection of the number of
and location of knot point improves correctness of fit. Consequently, it is more typical that
knots are chosen first as parameters, and so the number of control points depends on this
selection. Both the number of and the selection of knot points have significant impact on
the resulting B-spline curve.

When more knot points are used, more control points are required. The resulting cubic
B-spline has a better fit although the regularity is reduced. With fewer knot points, fewer
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control points are required. The resulting cubic B-spline has a worse fit but the curve is
more regular. There is clearly a trade-off between regularity and correctness of fit.

When modeling term-structures, B-splines perform worst for very short-term and long-
term maturities, especially because manual selection of knots is challenging. An adjacent
concept, smoothing splines refine the selection of the location and number of the knots so
that curve regularity and correctness of fit are optimized.

2.7 Smoothing Splines

Smoothing Splines allow us to weight the objectives of goodness of fit with smoothness. In
contrast to the cubic B-spline, the smoothing spline relies on the forward curve to estimate
the yield curve. For simplicity, the rest of the models presented in this paper are for zero-
coupon bonds (i.e. C = In). Then the forward rate f(t, T ) is the instantaneous rate that
can be locked in now for borrowing at time T for T ≥ t, and the forward curve is then
the function T → f(t, T ). For the sake of convenience, we will set t = 0 (no time like the
present!) and let f(0, u) = f(u). After estimating the optimal forward curve, we will work
backwards to get zero-coupon bond prices and yields.

Like the cubic-Bspline, we can formulate the smoothing spline as a minimization problem.

However instead of min
z∈Rm

∥∥P − Cd(z)
∥∥2, we have:

min
f
F (f) where F is a nonlinear functional

F (f) =

∫ T

0

(f ′(u))2du+ α
N∑
i=1

(
YiTi −

∫ T

0
if
′(u)du

)2

The values Yi, Ti come from the real-world data. Zero-coupon bonds always have a yield
and maturity attached to them. The

∫ T
0

(f ′(u))2du term captures the smoothness of the
forward curve. If forward rates are highly variable, then market expectations of future

interest rates are also highly variable. The
∑N

i=1

(
YiTi −

∫ Ti
0
f ′(u)du

)2
is the squared error

of our predictions. The parameter α controls the trade-off between smoothness and goodness
of fit. Note that if α = 0, then the optimal f(u) ≡ 0, and if α → ∞ then the optimal f
perfectly fits the data.

The actual methods for solving the minimization problem are well beyond our reach,
although Filipovic (2009) provides proofs for the existence and uniqueness of the solution.
One we have arrived at the optimal f(u), we can compute the yield curve via Y (t) =
1
t

∫ t
0
f(u)du.

2.8 Exponential Polynomial Models

The exponential polynomial family contains some of the most well known and used estimation
models. Like the smoothing spline, these models estimate the forward curve f(u) with a
function φ(u|z) where z is a set of coefficients. All of the models in the exponential polynomial
family has φ of the form p0 +p1(u)e−α1u+ · · ·+pn(u)e−αnu where pi is a polynomial of degree
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i in the variable u.
Two of the most common models is this family are the Nelson-Siegel and Svensson models.

Nelson-Siegel:

φ(u|z) = z1 + (z2 + z3u)e−z4u

Svensson:

φ(u|z) = z1 + (z2 + z3u)e−z5u + z4e
−z6u

Again, the actual methods of estimating the forward curve (here this is reduced to solving
for the optimal parameters z) are beyond our level. Like in the smoothing spline model, we
complete the estimation by backing out the yield curve from the forward curve.

The major advantage of such models is that they are able to accurately capture the term
structure model in such few parameters. Since these models are exponential polynomials,
smoothness is a built-in feature of the estimates and not something that has to be tuned like
the previous models.

2.9 Estimation and Comparison

In this section we will compare the previous spline methods using real world data. Our data
comes from the yields of U.S. Treasury bonds. 1

Maturity Yield (%) Maturity Yield (%)
1 Month 0.01 5 Year 1.72
6 Month 0.09 7 Year 2.41
1 Year 0.13 10 Year 3.00
2 Year 0.39 20 Year 3.68
3 Year 0.76 30 Year 3.92

Table 1: Data from Jan 02 2014, Source: Treasury Department

In Figure 1, we estimate the yield curve according to the previous models. 2 The level of
agreement between the models might surprise a reader new to the subject. After all, if the
models all accurately predict the same yield curve, why do so many researchers devote their
time to improving the models? The answer is that some models have statistically performed
better for certain functions and poorly for others. For example, the Svensson model here is
known to perform better under nonstandard conditions, like an ”inverted yield curve” (here
used to describe a yield curve that no longer meets the typical non-decreasing condition).
Also, depending on the modeler’s needs, she might choose to prioritize goodness of fit over
the smoothness of the yield curve. For example, a trader at a major bank will prioritize
goodness of fit over smoothness, while a central banker will do the opposite. The BIS (2002)
paper further explores the benefits/drawbacks of various models.

1Historical data available at treasury.gov under ”Daily Treasury Yield Curve Rates”
2We rely on finance packages in Python and R for the computation. From Scipy.Interpolate we use

UnivariateSpline and Bspline for the cubic-spline and smoothing spline. We use the “YieldCurve” package
in R for the Svensson model. Code for the estimation is attached as an appendix.
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Figure 1: Comparison of Term Structure Estimation Methods

3 Term Structure Models

We now discuss the theoretical underpinnings of term structure models. While the estima-
tion methods introduced in the previous section allow us to estimate the yield curve, the
stochastic models in this section provide deeper insight into the relationship between yields
and maturities.

3.1 Interest Rate Models

The simplest models have the risk-free interest rate r a constant. However, a more realistic
assumption is to model interest rates has stochastic processes. We begin with the one factor
stochastic differential equation:

dR(t) = β(t, R(t))dt+ γ(t, R(t))dW̃ (t) (1)

following the usual notion where ˜W (t) is Brownian Motion under the risk-neutral mea-
sure. The discount process D(t) dictates how market participants discount future income
relative to current income (i.e. net present value in finance terms).

D(t) = e−
∫ t
0 R(s)ds (2)

Definition 3.1. Zero-Coupon Bond: Contract promising to pay a certain “face value” (usu-
ally 1) at a fixed maturity date T.

The value of such a bond at time t is given by D(t)B(t, T ) = Ẽ[D(T )|F(t)] which

implies B(t, T ) = Ẽ[e−
∫ T
t R(s)ds|F(t)]. Note that this formula satisfies the terminal condition

B(T, T ) = 1.

7



Theorem 3.1. Discounted bond prices of a zero-coupon bond are martingales that satisfy
the differential equation

ft(t, r) + (t, r)fr(t, r) +
1

2
γ2(t, r)frr(t, r)− rf(t, r) = 0 (3)

Proof. First, to show that that D(t)B(t,T) is a martingale. Under the risk neutral measure

B(t, T ) = Ẽ[e−
∫ T
t R(s)ds|F(t)] is Brownian Motion by Theorem 5.2.3 in Shreve (2008). Thus

D(t)B(t,T) is a martingale.
Second, now that D(t)B(t,T) is a martingale, the Martingale Representation Theorem

(MRT) implies that there exists an adapted process Γ(u) 0 ≤ u ≤ T st. D(t)B(t, T ) =
B(0, T ) +

∫ t
0

Γ(u)dW (u).
Writing out the stochastic differential of D(t)B(t, T ),

d(D(t)B(t, T )) =d(D(t)f(t, R(t)) = f(t, R(t))dD(t) +D(t)df(t, R(t))

=D(t)[−Rfdt+ ftdt+ frdR +
1

2
frrdt]

=D(t) [−Rfdt+ ft + βfr +
1

2
γ2frr]︸ ︷︷ ︸

=0 by MRT

dt+D(t)γfrdW̃

Thus, the bond prices of a zero-coupon bond must satisfy the stochastic differential
equation given in equation 3.

3.2 Affine Yield Models

Affine yield models are defined by the feature that yields for zero-coupon bond prices are
an affine (linear plus constant) function of the interest rate. The prominent models that we
will discuss here are the Hull-White and Cox-Ingersoll-Ross (CIR) models.

3.2.1 One-Factor Hull-White Model

In the Hull-White interest rate model, the dynamics of the interest rate is given by:

Definition 3.2.

dR(t) = (a− bR(t))dt+ σdW̃ (t) (4)

Here, a(t), b(t), and σ(t) are all deterministic and positive functions of time. The resulting
partial differential equation is thus:

ft(t, r) + (a(t)− b(t)r)fr(t, r) +
1

2
σ2(t)frr(t, r)− rf(t, r) = 0 (5)

After an initial guess of

ft(t, r) = e−rC(t,T )−A(t,T ) (6)
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to solve the above partial-differential equation, where C(t, T ) and A(t, T ) are nonrandom,
the form is verified and the two functions are given by:

C(t, T ) =

∫ T

t

e−
∫ s
t b(v)dvds (7)

A(t, T ) =

∫ T

t

(a(s)C(s, T )− 1

2
σ2(s)C2(s, T ))ds (8)

As a result, the resulting for the price B(t, T ) of a zero-coupon bond is given by:

B(t, T ) = e−R(t)C(t,T )−A(t,T ) (9)

where 0 ≤ t ≤ T .

3.2.2 One-Factor CIR Model

The one-factor CIR model differs from the Hull-White model with the following form:

Definition 3.3. One-Factor CIR Model:

dR(t) = (a− bR(t))dt+ σ
√
R(t)dW̃ (t) (10)

where a, b, and σ are positive and constant. A nice feature of these models is the easy
interpretation of the parameters as well as the mean reversion of the interest rate towards
a long-run value. The rate of mean reversion is 1/b and the long-run risk-free interest rate
is a ∗ b, and σ2 represents the volatility of the risk-free interest rate. The partial differential
equation that follows is:

ft(t, r) + (a(t)− br)fr(t, r) +
1

2
σ2rfrr(t, r)− rf(t, r) = 0 (11)

Similar to the Hull-White model above, we guess a solution of the form

ft(t, r) = e−rC(t,T )−A(t,T ) (12)

to solve the above partial-differential equation, where C(t, T ) and A(t, T ) are again non-
random. The form is verified and the two functions are given by:

C(t, T ) =
sinh(γ(T − t))

γ cosh(γ(T − t)) + 1
2
b sinh(γ(T − t))

(13)

A(t, T ) =
−2a

σ2
log(

γe
1
2
b(T−t)

γ cosh(γ(T − t)) + 1
2
b sinh(γ(T − t))

) (14)

Here, γ = 1
2

√
b2 + 2σ2. Note that these are solutions to the terminal conditions A(T, T ) =

C(T, T ) = 0.

9



3.2.3 Two-Factor CIR Model

The models discussed so far have thus been one-factor models in that the interest rate is
determined by only one stochastic differential equation. As the name suggests, the two-
factor CIR model is given by a system of two stochastic differential equations defined by the
following:

Definition 3.4.

R(t) = δ0 + δ1Y1(t) + δ2Y2(t) (15)

dY1(t) = (µ1 − λ11Y1(t)− λ12Y2(t))dt+
√
Y1(t)dW̃1(t) (16)

dY2(t) = (µ2 − λ21Y1(t)− λ22Y2(t))dt+
√
Y2(t)dW̃2(t) (17)

where δ0 ≥ 0, δ1 > 0, δ > 0, µ1 ≥ 0, µ2 ≥ 0, λ11 > 0, λ22 > 0, λ12 ≤ 0, and λ21 ≤ 0.
To solve the above, we guess a solution of the form

f(t, y1, y2) = e−y1C1(T−t)−y2C2(T−t)−A(T−t) (18)

From the terminal conditions that C1(0) = C2(0) = A(0) = 0, the following system of
ordinary differential equations results:

C ′1(τ) = −λ11C1(τ)− λ21C2(τ)− 1

2
C2

1(τ) + δ1 (19)

C ′2(τ) = −λ12C1(τ)− λ22C2(τ)− 1

2
C2

2(τ) + δ2 (20)

A(t, T ) = µ1C1(τ) + µ2C2(τ) + δ0 (21)

A numerical solution can then be used to solve this system.

4 Conclusion

In this paper we have examined both the estimation methods and theory behind the term
structure. We show that the cubic B-spline, smoothing spline, and Svensson methods all
provide reliable and consistent estimates of the yield curve, and then we turn the stochas-
tic interest rate models such as the Hull-White and CIR models to better understand the
relationship between yields and maturities.
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In [75]: import os 
os.chdir('C:\\Users\\WHL\\Documents\\Math 530') 
import matplotlib.pyplot as plt 
import pandas as pd 
import numpy as np 
import sys 
import math 
import QuantLib as ql 
from scipy.interpolate import CubicSpline 
from scipy.interpolate import BSpline 
from scipy.interpolate import UnivariateSpline 
from scipy.interpolate import splrep 

In [4]: #Does the plot of the real data 
y = np.array([.01, .09, .13, .39, 0.76, 1.72, 2.41, 3, 3.68, 3.92]) 
mat = np.array([1/12 , 1/2 , 1, 2, 3, 5 , 7 , 10 , 20 ,30]) 

In [5]: plt.plot(mat, y, 'bo') 
plt.ylabel('Yield (%)') 
plt.xlabel('Maturity (Years)') 
plt.title('US Treasury Yields (01/02/2015)') 
plt.savefig('RealData.jpeg') 

In [6]: #Cubic Spline 
cs = CubicSpline(mat, y) 
xs = np.arange(-.5, 30, .1) 
cube_spline = cs(xs) 

In [69]: #Cubic B-Spline 
alpha = len(mat) - math.sqrt(2*len(mat)) + 1 #on advice on the scipy developer
s 
t,c,k = splrep(mat, y, s = 0, k = 3) 
cbs = BSpline(t,c,k, extrapolate = True) 
cubic_bspline = cbs(xs) 
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In [70]: #Smoothing Spline 
ss = UnivariateSpline(mat, y, k = 3, s = 5) 
smooth_spline = ss(xs) 

In [11]: #Svensson Model 
sven = pd.read_csv('sven.curve.csv') #Estimates from R package "YieldCurve" 
sven['y'] = np.arange(360)/12 

In [72]: plt.plot(mat, y, 'o',color= 'black', label = 'Actual Data', markersize = 10) 
plt.plot(xs, cubic_bspline, label = 'Cubic B-Spline', color = 'red') 
plt.plot(xs, smooth_spline, label = 'Smoothing Spline', color = 'green') 
plt.plot(sven['y'], sven['x'] , label = 'Svensson Polynomial', color = 'blue') 
plt.ylabel('Yield (%)') 
plt.legend() 
plt.title('Comparison of Estimation Methods') 
plt.xlabel('Maturity (Years)') 
plt.savefig('Comparison') 
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